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Networking genetic regulation and neural computation:
Directed network topology and its effect on the dynamics
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Two different types of directed networks are investigated, transcriptional regulation networks and neural
networks. The directed network structure is studied and is also shown to reflect the different processes taking
place on the networks. The distribution of influence, identified as the the number of downstream vertices, are
used as a tool for investigating random vertex removal. In the transcriptional regulation networks we observe
that only a small number of vertices have a large influence. The small influences of most vertices limit the
effect of a random removal to, in most cases, only a small fraction of vertices in the network. The neural
network has a rather different topology with respect to the influence, which are large for most vertices. To
further investigate the effect of vertex removal we simulate the biological processes taking place on the
networks. Opposed to the presumed large effect of random vertex removal in the neural network, the high
density of edges in conjunction with the dynamics used makes the change in the state of the system to be
highly localized around the removed vertex.
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[. INTRODUCTION since synthesis of RNA and protein both are energy expen-
In recent years complex networks have drawn a great ded] Ve Processes. Anot_her example is the .regu'a?“oﬁ of en-
. . . . zymes. The best studied case of enzyme induction involves
of attention from the physics community. Various measure S S .
e enzymes of lactose degradatiorEischerichia coli Only

have been introduced in order to capture the function an h £l h h

form of specific networks. An observed feature that manym.t. e presence of lactose the enzymes that are necessary to

networks show are a scale free or at least wide distribution O§t|l|;e _Iactosg as a carbon and energy source are synthesized.

the vertex degree, which is given as a popular and well cite utitis not just a mgtter of the presence of lactose. If b.Oth
glucose and lactose is preséntcolichooses glucose. This is

explanation in Ref[1]. Other studies includes measures Oftranscri tionally regulated via both positive and negative
clustering, assortative mixin@], and betweenness centrality control P y reg P 9

[3-5]. For a review of the recent work on networks, see Refs.

S The networks used in this paper are the neural network of
[6—8]. Many of the networks appearing in the real world are . i
directed and naturally the structure of two networks can béhe nematod€aenorhabditis elegand@INCE) [9), the tran

fundamentally different when the direction of the edges ar scriptional regulaton network of the bacteiacoli (TREC)

considered, even if the overall structure might be alike wheilo]’ and the transpr_|pt|0nal regulaton network of yedisic-
the direction of the edges is not considered. Two examples ogharomyces cerevisia@RSQ [11].

real world networks that are naturally directed are neural

networks and transcriptional regulation networks. The Il. STRUCTURAL PROPERTIES

formecrj IS thcej_ netw(;):ck %f neurﬁns V\r/]here neur(f)ns 6;:6 CON- A directed edge in the literature formally termed arc also
hected In a |rectef as hlon w ere,t ‘jjang?s 0 (_aach_neurqni” be the term used in this paper. Because of the direction
connect to one of another neuron's dendrites, in this Wayy \he ares one is able to follow directed paths in the net-

building up a d|_rected net_work in Wh'Ch_ _S|gnals are Semwork, representing the flow of information, the chain of com-
(axong and receiveddendriteg by the individual neurons. mand, or some other flow in the network. Depending on the
In the transcriptional regulation networks, the vertices repre

; - system “living on” the network, the structure might look
sent proteins and the edges represent one protein's ”a”Skaﬁe{ry different when the direction of the arcs in the different
tional regulation(positive and/or negatiyeof another pro-

N Th ¢ lation is th h ¢ | networks are taken into account. To get a first picture of what
tein. The cause of regulation Is the attachment of a regulatqg o ing o in the networks we look at the distribution of the

protein to an opgrator position located on 'ghe D'\,IA upstrean),, mher of vertices with just outgoing arcs, only incoming
of the gene coding for the regulated protein or, if more thar, s “ang with both outgoing and incoming arcs. in a network
one protein, operon. The attachment responds either in an yp \ hich information is flowing like the neural network a

rResxlatmfn r?r dowr]f. regulation dththe tr:anscné:)tlon ratr—.; t;f]ysignificant fraction of vertices should have both incoming
p of the specific gene and thus the production of the, outgoing arcs in order to transport information between
protein. The reasons for regulation are many, of which on

. ) ; " . RQifferent parts of the network. Figure 1 shows the distribu-
example is energy savings in a poor nutritional environmentjo, of the three different types of vertices in the networks.
The neural network consists of mosthyterneurons that is,
neurons with both incoming and outgoing arcs, and have a
*Electronic address: gronlund@tp.umu.se low fraction of sensory neurongonly outgoing arck and
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TRSC TREC NNCE just one protein which often has a high degf&8] and with
1&0: 10% Out:20% 180: 169 Out: 8% Out: 5% mostly just ou.tgoir.lg arcs, a global controIIer_. In the neural
In: 8% network the situation is precisely the opposite; the sensors

have in general very few outgoing arcs, in fact often just one.
The sensory neurons are in most cases connected to an inter-
neuron of a relative high degree of incoming links from
which it collects information from a number of sensory neu-
rons. In only a few cases the sensory neurons are connected
directly to a motor neuron.

In: 70% In: 76% 1&0: 88%

FIG. 1. (Color onlineg The distribution of vertices with only
incoming arcs, only outgoing arcs, and with both incoming and
outgoing arcs.

Ill. ROBUSTNESS VIA STRUCTURE

motor neurongonly incoming arcs For more information .
) Many networks are believed to have a modular structure
on interneurons, sensory neurons and motor neurons, see : . . A
. ) with functional modules in which communication is more
Ref.[12]. The regulation networks have a different structure s : :
resent than between the modules. In addition to just having

where the number of vertices of both incoming and outgoin gparate functions this also minimizes the influence of a ran-
arcs are suppressed and the network is dominated by vertic om change of the network. The modularity has been studied

of only incoming links. . .
Since the different neurons play a different role and haveand detected in undirected networksi-1§ and network

. . 4 .. ..._models[17]. In nature there are many things found or be-
different functions, a natural question to ask would be if this
) . . . lieved to be modulafl8,19 where the separate modules are
is reflected in the degree of the different vertices. In ther sponsible for different functions and together serve as a
neural network the sensory neurons receive their signals ndg P 9

from other neurons but fromeceptors The motor neurons unitin a larger system. The r_nqdularlty of the transcrlpt_lonal
L regulation network of. cerevisia¢ TRSO has been studied

transmit _S|g.n.als not to other neurons but to one or mor'TZO] and also the robustness in REf1]. Some modules are

effectorsigniting chemical reactions like the ones respon—mor‘e important than others, and by removing a unit more or

sible for the contraction of muscles. The sensory NEUTONR.ss of the function of the total system is removed. Since the

collect information from the outside world which is Ioalssedtranscri tional regulation networks serves as regulating sys-
on via the interneurons to various parts of the network. Thi p gula . . -guiating Sy
ems of the production of various proteins with different

Qefmes the state of the syst?m Wh'Ch.'S \,{'S'ble Via aresponsg s they need to be constructed to retain most of the func-
in the motor neurons. The “end station” of an input is not

. o . tions even if subjected to random removal or random
necessarily a specific motor neuron. The inputs are collec- .
. . S changes of proteins. Random changes are naturally present
tively setting the whole network in different states, and thusvia mutations in the DNA. Besides the fact that the DNA
produces different responses to different inputs. )

In Fig. 2 the degree distribution of the different networks contains garbage .Wh'Ch reduces the p_robab|I|ty of remov-
. ing important functions, one could ask if the transcriptional
are plotted and one can observe that the transcriptional regu-

lation networks(TRSC and TRECare somewhat similar in regulation net_works hayg ‘?VO'Ved. o a struciure which is ro-
] ) : . _bust to mutations and if it is possible to reveal and quantify
the sense that the degree of the vertices with only incomin

arcs is lower than the rest of the vertices. This indicates tha e robustness with some measure of the structure.

the proteins with no control and with a position in analogy of In th? I|teratu_re there are a number of different measures
. of prestige and influence, see, e.g., R@2]. Let D; be the

a laborer tend to be controlled by a few proteins and often : X

number of downstream vertices of a verigxand define the

1 influencel; of the vertexv; to be the fraction of vertices in

TanC& g:zfg— the network which is downstream of vertey
10-! 3 Di
= )
102 LR N-1
. TREC The distribution of the influencB(l) of the vertices in the
= o ] network provides information on how the influence and con-
N % trol are distributed in the network. Moreover, the distribution
& 10-2 Beserananens : P(l) also provides information on how large a fraction of the
NNCE network is maximally(and typically affected by random
10-11 ] change. For the function of the network to be stable to
changes, the structure has to be designed in a way where
10-2 3 most vertices only influence a low fraction of the vertices in
1 121 10° the network. But even though the stability is important, the

function of the network might anyway need some vertices of

FIG. 2. (Color onling The cumulative degree distribution of great influence or control, global controller proteins. The glo-

vertices with only incoming arcs, only outgoing arcs, and with bothbal controllers are needed for the response to nutritional el-
incoming and outgoing arcs. ements C, O, N, P, heat shock, growth rate, and more.
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FIG. 3. (Color online The distribution of influenceP(l) of = Hy

TREC and TRSC. The data are binned.

In Fig. 3 the distributionP(l) of TRSC and TREC is _DD_L_.:. —

plotted. From the plot one can see that in TREC and TRSC =

most of the proteins control only a very little part of the

network. The implication of this is that a random mutation or  FIG. 4. (Color onling The update rules for the protein regula-

deletion of a vertexprotein affects only a very small part of tion networks. The positively regulating proteins, activator proteins,

the network. In the case of NNCE, the situation is the reversare treated with a majority rule illustrated @) and (b) and is

as can be seen in Table I. overriden by a negative regulation, repressor, which is illustrated in
A random removal or damage of a neuron can possiblyc) and(d).

affect the whole network. How and to which extent probably . -

depends on the exact dynamics of the network and the sity- " the model that we use to simulate the transcriptional

ation. The network is still likely to be connected after a ran_regulatlon, the state of a gene coding for a specific pratein

dom vertex removal because of the high density of arcshaS two values, expressed or not expressedr off. If the
9 y state of the gene coding for a specific proteirofsthere is

however, because of the high influence of the vertices a rams, production, or at most a very small production, of the
dom removal of a neuron will possibly change the state of EE{/ ’ X

) otein and is therefore not considered to be present in the
large fraction of the other neurons, and thus the response Q siem. If the state isn there is a production enough for the

different inputs/stimuli. This is analyzed in the next SeCtion-protein considered to be present in the system. The state of a
IV ROBUSTNESS VIA DYNAMICS gene cod_ing for_a protein; i§ cjetermined and regulate_d by
the proteinsv; with arcs pointing towards;. The proteins

To analyze whether the influenteof a vertex is of im-  with no incoming arcs are determined from the initiation and
portance when considering vertex removal, two simple modcan be considered as different environmental settings. The
els are used, where one captures the nature of the interactiofiges for how the update is done can be summarized as fol-
of the trancriptional networks and the other the neural netlows.
works. In Ref.[23], the transcriptional network d. cerevi-
siae(TRSO is analyzed in terms of Boolean network models (1) All vertices are randomly initiated with the valuws
with the aim of determining feasible rule structures. In theiror off.
paper they find that many of the generated networks are (2) The vertices); are then updated sequentially with the
shown to have a substantial part which is frozen in the sensfllowing rule until a final state is achieved:
that the final state is the same regardless of the initial states.

As described before, the vertices in the trancriptional net- (@ The state of all vertices; pointing atv; are deter-
works consist of proteins and the arcs represent one protein’s mined.

regulation of another, in which the regulation can be either a (b) If the state of a proteim; with negative regulation
positive regulation, an activator protein, or a negative regu- (repressoris on, the state of proteim; is off.

lation, a repressor. Also a study of the robustness of tran- (c) If no negative regulation is present, the regulation
scriptional regulation networks with the use of neural net- follows a majority rule and the state of the protein
works are done in Ref24]. v; is on/offif the majority of the state of the posi-

tive regulating proteing; are on/off
TABLE |. The influencel, the fraction of neurons of influence

P(l), and the effec\S; of removal of a neuron of influende The update is illustrated in Fig. 4. The motivation for the
model follows from the nature of the interactions. Negative
I P(I) AS regulation by a repressor blocks the production of a protein
by binding to an operator downstream of the promoter of the

0.0 0.075 0.0 gene that codes to the specific protein. When the repressor
0.007 0.014 0.0030) sits downstream of the promoter it stops the transcription of
0.939 0.854 0.005B) the downstream gene from RNAp. Positive regulation by an
0.942 0.043 0.003B) activator enhances the probability of RNAp to attach to the
0.946 0.014 0.0087) promoter of the gene and thereby the transcription of the

gene that codes for the specific protein.
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. . ) FIG. 6. (Color online The fraction of vertices with a different
FIG. 5. (Color onling The difference of the final statsS ver-  giates, | plotted against distance of the removed vertex. The data

sus vertex removal of a vertex with influen¢e The lines are 56 fitted to exponential functions. The errors are smaller than the
straight line approximations to guide the eye and the plotted dat'%‘ymbol sizes.

are binned. The errors are smaller than the symbol sizes.

The state of the total system is represented by a vector of NNCE is applied to a similar dynamics as the transcrip-
dimensionN, (S;,S,, ...,Sy). To investigate the effect of a tional regulation networks, with the only difference that there
random vertex deletion and to which extent the influence ofire no negative regulations which overrule the positive ones.
the vertex plays a role for the state of the system, the finalhe neurons are thus treated MgCullough-Pittsneurons
state obtained from an initial configuration is compared with[25,2¢ with binary state®n/off and with equal and positive
the corresponding final state from the same initial configurasynaptic coupling strengttexcitatory and with a threshold
tion but with a vertex deleted from the network. The rela-of n,/0.5, wheren; are the number of inputs. All neurons are
tionship of the influence of the removed vertex and the effeckonsidered to be excitatory, that is, in a stafewhen the
of the influence of the final state is demonstrated in Fig. Sinpyt is below the threshold arah if the input is above the
AS; is the fraction of verticegproteing in the network hav-  {hreshold. The update of the state of each neuron is therefore
ing a different final state after the removal of a vertex simply a majority rule, that is, the sta& of a neurony; is
Only the initial configurations that converge to a final state isy/offif the majority of the states of the incoming signals are
c_onsidered_. The fraption of initial states that converge to & n/off If there is no majority, that is, the numberafiinputs
final state is approximately 1 for TREC and 0.7 for TRSC. 510 equal to the number off inputs, the state of the neuron
The initial configurations that do not converge to a final stat§g qefined to ben. Since the influence of the neurons in the
ends up in an oscillatory state, and they are not considered Qfatwork is concentrated to a value arouns0.94 a linear
investigated here. As one can see, the overall behavior is thabpendence of the difference in the stA® to the influence
the difference in the final stataS; has a somewhat linear | is thys not achievable. However, we can still get informa-
behavior of the influencé of the vertexv being removed. ion of the effect of a vertex removal just by looking at the
The plot of TRSC does not follow the straight line approxi- 5 erage difference in the final state from the deletion of a
mation for larger values of, which might indicate that the o,:on As before, the results are averaged by a number of
measure of influence used here is not perfectly suited for thgjgerent initial configurations and different vertex removals.
applied dynamics. , The results of the simulations done for NNCE are sum-

Since the networks have a fixed structure, the values foparjzeq in Table I. As one can see, the change in the state of
the difference in the final statesS; for the different influ- 5 ystem is very small even if the influence of the removed
encesl do not all follow the approximated straight line as \erey is large. The fact that the network is very dense and
can be observed, but the calculated error for the individuajj, o+ the dynamics follow a majority rule implies that the
values ofAS; are, nevertheless, small. Since the dynamicgpange in'the state of the system from the deletion of an
incorporates a majority rule, the effect of a vertex removalgjidual neuron is small. The change in the state from the
decays with the distance from the removed vertex and therezmoval of a single neuron is simply averaged out in most
fore only a fraction of the downstream vertices get adiﬁ‘erentcases’ but there are of course changes in the state of some
state after the removal. How large the fraction is dependge  rons |ocated nearby the removed neuron. A further study
therefore on the structure of the network and the typical disy,ouid be to see how the state of the system responds when
tance to the downstream vertices from the removed one.  jg|eting a neighborhood of neurons to resemble a more real-

Figure 6 shows the fraction of all vertices with distante gtic physical damage. One of the conclusions one can make
from the removed vertex which have a different final state,g hat ‘even if the influence of most vertices is large, the
AS; 4 compared with the final state before the removal. Ex-qynamics put on the network results in a situation where the
cept from the exponential decay, one can also observe thakyork is not very affected by a random removal of a single

the longest directed path is only of four steps in TREC and Of,eron. Figure 7 shows the decay of the fraction of changed
six in TRSC. As a comparison, the diameter in TREC is 13

, X X ) ; ) states with the distance, and like the transcriptional regula-
and in TRSC 14. Since th.e fract'|on Qf vertices Wlth a differ-jon networks the decay fits well to an exponential decay.
ent state drops exponentially with distance, a refinement of
the measure of influence used here would be the measure of
proximity prestiggsee Ref[22]), which is a vertex’s number

of downstream vertices normalized with their average dis- The two directed types of networks analyzed here are

tance to the vertex. shown to have a different structure in various measures

V. SUMMARY
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0.03 ' ' NNCE © the vertex, are limited for most vertices in the transcriptional
regulation networks. The neural network is showing a sub-

3 0.02 stantial part of the network to influence almost all vertices in
2 > the network. We simulate the biological processes on the
0.01 ° networks and we investigate relationship of the influence of a
—~——— removed vertex with the change in the state of the biological

i 2 3 4 5 system. In the protein regulation networks the effect of a
d random removal are limited in most cases due to the fact that

) . ) ) ) the influence of most proteins are restricted to a small num-

FIG. 7. (Color onling The fraction of vertices with a different per of proteins. However, the removal of a protein of great
stateA$; 4 plotted against distance of the removed vertex. The data,f| ence changes the state of the system more since the
are fitted to an exponential function. change in the state is shown to increase, with some excep-

which incorporates the direction of the edges. The neurdions, linearly with the influence. In the case of the neural
network ofC. elegance&onsists of mostly vertices with both Network where the influence of most vertices are fairly large,
incoming and outgoing arcs, interneurons, possibly due téhe great number of arcs suppresses the effect of the removal
the fact that it is an information network in which informa- of an individual neuron since the state of each neuron obeys
tion is processed and spread between different parts of th@ majority rule of the states of the incoming signals. Since
network. There is also a fraction of vertices with only out-the changes in the states of the vertices due to a vertex re-
going arcs, sensory neurons, that feed the network with exnoval is shown to decay exponentially with the distance
ternal information. Finally, there is a small fraction of verti- from the removed vertex, a proper refinement of the measure
ces with only incoming arcs, motor neurons, responsible foof influence could be to include the typical distance to the
igniting chemical reactions like contraction of muscles. downstream vertices in the measure of influence, just like the
We find that the protein regulation networkstafcoliand  measure ofproximity prestige A remark with the previous
S. cerevisaboth show a small fraction of proteins with both observations in mind would therefore be that the influence or
incoming and outgoing arcs, and the dominating part of theyrestige in a networkdirected or not probably to a large
network consists of proteins that only have incoming arcsgytent depends on the dynamics applied to the network, and
which we term laborers in the analogy of a human laboregherefore every investigation of prestige or influence should

which only has a small influence in the system he or shg. in coniunction with the dvnamics applied to the network
works in. The laborers are possibly used as building blocks ! junction wi y ! bl work.

or as components in different biochemical processes. There

are also proteins that have a large nl_meer of outgoing_arcs ACKNOWLEDGMENTS
and thus globally control the production of many proteins,
where most of them are laborers. Many thanks to Petter Holme and Martin Rosvall for

The influence of the vertices, defined for a vertex as thénelpful comments and beneficial discussions contributing to
fraction of vertices in the network situated downstream ofthis paper.
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