
Networking genetic regulation and neural computation:
Directed network topology and its effect on the dynamics

Andreas Grönlund*
Department of Physics, Umeå University, 901 87 Umeå, Sweden

(Received 11 June 2004; published 20 December 2004)

Two different types of directed networks are investigated, transcriptional regulation networks and neural
networks. The directed network structure is studied and is also shown to reflect the different processes taking
place on the networks. The distribution of influence, identified as the the number of downstream vertices, are
used as a tool for investigating random vertex removal. In the transcriptional regulation networks we observe
that only a small number of vertices have a large influence. The small influences of most vertices limit the
effect of a random removal to, in most cases, only a small fraction of vertices in the network. The neural
network has a rather different topology with respect to the influence, which are large for most vertices. To
further investigate the effect of vertex removal we simulate the biological processes taking place on the
networks. Opposed to the presumed large effect of random vertex removal in the neural network, the high
density of edges in conjunction with the dynamics used makes the change in the state of the system to be
highly localized around the removed vertex.
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I. INTRODUCTION

In recent years complex networks have drawn a great deal
of attention from the physics community. Various measures
have been introduced in order to capture the function and
form of specific networks. An observed feature that many
networks show are a scale free or at least wide distribution of
the vertex degree, which is given as a popular and well cited
explanation in Ref.[1]. Other studies includes measures of
clustering, assortative mixing[2], and betweenness centrality
[3–5]. For a review of the recent work on networks, see Refs.
[6–8]. Many of the networks appearing in the real world are
directed and naturally the structure of two networks can be
fundamentally different when the direction of the edges are
considered, even if the overall structure might be alike when
the direction of the edges is not considered. Two examples of
real world networks that are naturally directed are neural
networks and transcriptional regulation networks. The
former is the network of neurons where neurons are con-
nected in a directed fashion where the axons of each neuron
connect to one of another neuron’s dendrites, in this way
building up a directed network in which signals are sent
(axons) and received(dendrites) by the individual neurons.
In the transcriptional regulation networks, the vertices repre-
sent proteins and the edges represent one protein’s transcrip-
tional regulation(positive and/or negative) of another pro-
tein. The cause of regulation is the attachment of a regulator
protein to an operator position located on the DNA upstream
of the gene coding for the regulated protein or, if more than
one protein, operon. The attachment responds either in an up
regulation or down regulation of the transcription rate by
RNAp of the specific gene and thus the production of the
protein. The reasons for regulation are many, of which one
example is energy savings in a poor nutritional environment

since synthesis of RNA and protein both are energy expen-
sive processes. Another example is the regulation of en-
zymes. The best studied case of enzyme induction involves
the enzymes of lactose degradation inEscherichia coli. Only
in the presence of lactose the enzymes that are necessary to
utilize lactose as a carbon and energy source are synthesized.
But it is not just a matter of the presence of lactose. If both
glucose and lactose is presentE. coli chooses glucose. This is
transcriptionally regulated via both positive and negative
control.

The networks used in this paper are the neural network of
the nematodeCaenorhabditis elegance(NNCE) [9], the tran-
scriptional regulaton network of the bacteriaE. coli (TREC)
[10], and the transcriptional regulaton network of yeast,Sac-
charomyces cerevisiae(TRSC) [11].

II. STRUCTURAL PROPERTIES

A directed edge in the literature formally termed arc also
will be the term used in this paper. Because of the direction
of the arcs one is able to follow directed paths in the net-
work, representing the flow of information, the chain of com-
mand, or some other flow in the network. Depending on the
system “living on” the network, the structure might look
very different when the direction of the arcs in the different
networks are taken into account. To get a first picture of what
is going on in the networks we look at the distribution of the
number of vertices with just outgoing arcs, only incoming
arcs, and with both outgoing and incoming arcs. In a network
in which information is flowing like the neural network a
significant fraction of vertices should have both incoming
and outgoing arcs in order to transport information between
different parts of the network. Figure 1 shows the distribu-
tion of the three different types of vertices in the networks.
The neural network consists of mostlyinterneurons, that is,
neurons with both incoming and outgoing arcs, and have a
low fraction of sensory neurons(only outgoing arcs) and*Electronic address: gronlund@tp.umu.se
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motor neurons(only incoming arcs). For more information
on interneurons, sensory neurons and motor neurons, see
Ref. [12]. The regulation networks have a different structure
where the number of vertices of both incoming and outgoing
arcs are suppressed and the network is dominated by vertices
of only incoming links.

Since the different neurons play a different role and have
different functions, a natural question to ask would be if this
is reflected in the degree of the different vertices. In the
neural network the sensory neurons receive their signals not
from other neurons but fromreceptors. The motor neurons
transmit signals not to other neurons but to one or more
effectors igniting chemical reactions like the ones respon-
sible for the contraction of muscles. The sensory neurons
collect information from the outside world which is passed
on via the interneurons to various parts of the network. This
defines the state of the system which is visible via a response
in the motor neurons. The “end station” of an input is not
necessarily a specific motor neuron. The inputs are collec-
tively setting the whole network in different states, and thus
produces different responses to different inputs.

In Fig. 2 the degree distribution of the different networks
are plotted and one can observe that the transcriptional regu-
lation networks(TRSC and TREC) are somewhat similar in
the sense that the degree of the vertices with only incoming
arcs is lower than the rest of the vertices. This indicates that
the proteins with no control and with a position in analogy of
a laborer tend to be controlled by a few proteins and often

just one protein which often has a high degree[13] and with
mostly just outgoing arcs, a global controller. In the neural
network the situation is precisely the opposite; the sensors
have in general very few outgoing arcs, in fact often just one.
The sensory neurons are in most cases connected to an inter-
neuron of a relative high degree of incoming links from
which it collects information from a number of sensory neu-
rons. In only a few cases the sensory neurons are connected
directly to a motor neuron.

III. ROBUSTNESS VIA STRUCTURE

Many networks are believed to have a modular structure
with functional modules in which communication is more
present than between the modules. In addition to just having
separate functions this also minimizes the influence of a ran-
dom change of the network. The modularity has been studied
and detected in undirected networks[14–16] and network
models[17]. In nature there are many things found or be-
lieved to be modular[18,19] where the separate modules are
responsible for different functions and together serve as a
unit in a larger system. The modularity of the transcriptional
regulation network ofS. cerevisiae(TRSC) has been studied
[20], and also the robustness in Ref.[21]. Some modules are
more important than others, and by removing a unit more or
less of the function of the total system is removed. Since the
transcriptional regulation networks serves as regulating sys-
tems of the production of various proteins with different
tasks they need to be constructed to retain most of the func-
tions even if subjected to random removal or random
changes of proteins. Random changes are naturally present
via mutations in the DNA. Besides the fact that the DNA
contains “garbage” which reduces the probability of remov-
ing important functions, one could ask if the transcriptional
regulation networks have evolved to a structure which is ro-
bust to mutations and if it is possible to reveal and quantify
the robustness with some measure of the structure.

In the literature there are a number of different measures
of prestige and influence, see, e.g., Ref.[22]. Let Di be the
number of downstream vertices of a vertexvi, and define the
influenceI i of the vertexvi to be the fraction of vertices in
the network which is downstream of vertexvi,

I i =
Di

N − 1
. s1d

The distribution of the influencePsId of the vertices in the
network provides information on how the influence and con-
trol are distributed in the network. Moreover, the distribution
PsId also provides information on how large a fraction of the
network is maximally(and typically) affected by random
change. For the function of the network to be stable to
changes, the structure has to be designed in a way where
most vertices only influence a low fraction of the vertices in
the network. But even though the stability is important, the
function of the network might anyway need some vertices of
great influence or control, global controller proteins. The glo-
bal controllers are needed for the response to nutritional el-
ements C, O, N, P, heat shock, growth rate, and more.

FIG. 1. (Color online) The distribution of vertices with only
incoming arcs, only outgoing arcs, and with both incoming and
outgoing arcs.

FIG. 2. (Color online) The cumulative degree distribution of
vertices with only incoming arcs, only outgoing arcs, and with both
incoming and outgoing arcs.
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In Fig. 3 the distributionPsId of TRSC and TREC is
plotted. From the plot one can see that in TREC and TRSC
most of the proteins control only a very little part of the
network. The implication of this is that a random mutation or
deletion of a vertex(protein) affects only a very small part of
the network. In the case of NNCE, the situation is the reverse
as can be seen in Table I.

A random removal or damage of a neuron can possibly
affect the whole network. How and to which extent probably
depends on the exact dynamics of the network and the situ-
ation. The network is still likely to be connected after a ran-
dom vertex removal because of the high density of arcs,
however, because of the high influence of the vertices a ran-
dom removal of a neuron will possibly change the state of a
large fraction of the other neurons, and thus the response to
different inputs/stimuli. This is analyzed in the next section.

IV. ROBUSTNESS VIA DYNAMICS

To analyze whether the influenceI of a vertex is of im-
portance when considering vertex removal, two simple mod-
els are used, where one captures the nature of the interactions
of the trancriptional networks and the other the neural net-
works. In Ref.[23], the transcriptional network ofS. cerevi-
siae(TRSC) is analyzed in terms of Boolean network models
with the aim of determining feasible rule structures. In their
paper they find that many of the generated networks are
shown to have a substantial part which is frozen in the sense
that the final state is the same regardless of the initial states.
As described before, the vertices in the trancriptional net-
works consist of proteins and the arcs represent one protein’s
regulation of another, in which the regulation can be either a
positive regulation, an activator protein, or a negative regu-
lation, a repressor. Also a study of the robustness of tran-
scriptional regulation networks with the use of neural net-
works are done in Ref.[24].

In the model that we use to simulate the transcriptional
regulation, the state of a gene coding for a specific proteinvi
has two values, expressed or not expressed;on or off. If the
state of the gene coding for a specific protein isoff there is
no production, or at most a very small production, of the
protein and is therefore not considered to be present in the
system. If the state ison there is a production enough for the
protein considered to be present in the system. The state of a
gene coding for a proteinvi is determined and regulated by
the proteinsv j with arcs pointing towardsvi. The proteins
with no incoming arcs are determined from the initiation and
can be considered as different environmental settings. The
rules for how the update is done can be summarized as fol-
lows.

(1) All vertices are randomly initiated with the valueon
or off.

(2) The verticesvi are then updated sequentially with the
following rule until a final state is achieved:

(a) The state of all verticesv j pointing atvi are deter-
mined.

(b) If the state of a proteinv j with negative regulation
(repressor) is on, the state of proteinvi is off.

(c) If no negative regulation is present, the regulation
follows a majority rule and the state of the protein
vi is on/off if the majority of the state of the posi-
tive regulating proteinsv j areon/off.

The update is illustrated in Fig. 4. The motivation for the
model follows from the nature of the interactions. Negative
regulation by a repressor blocks the production of a protein
by binding to an operator downstream of the promoter of the
gene that codes to the specific protein. When the repressor
sits downstream of the promoter it stops the transcription of
the downstream gene from RNAp. Positive regulation by an
activator enhances the probability of RNAp to attach to the
promoter of the gene and thereby the transcription of the
gene that codes for the specific protein.

FIG. 3. (Color online) The distribution of influencePsId of
TREC and TRSC. The data are binned.

TABLE I. The influenceI, the fraction of neurons of influence
PsId, and the effectDSf of removal of a neuron of influenceI.

I PsId DSf

0.0 0.075 0.0

0.007 0.014 0.0030(0)

0.939 0.854 0.0052(6)

0.942 0.043 0.0035(8)

0.946 0.014 0.0051(7)

FIG. 4. (Color online) The update rules for the protein regula-
tion networks. The positively regulating proteins, activator proteins,
are treated with a majority rule illustrated in(a) and (b) and is
overriden by a negative regulation, repressor, which is illustrated in
(c) and (d).
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The state of the total system is represented by a vector of
dimensionN, sS1,S2, . . . ,SNd. To investigate the effect of a
random vertex deletion and to which extent the influence of
the vertex plays a role for the state of the system, the final
state obtained from an initial configuration is compared with
the corresponding final state from the same initial configura-
tion but with a vertex deleted from the network. The rela-
tionship of the influence of the removed vertex and the effect
of the influence of the final state is demonstrated in Fig. 5.
DSf is the fraction of vertices(proteins) in the network hav-
ing a different final state after the removal of a vertexv.
Only the initial configurations that converge to a final state is
considered. The fraction of initial states that converge to a
final state is approximately 1 for TREC and 0.7 for TRSC.
The initial configurations that do not converge to a final state
ends up in an oscillatory state, and they are not considered or
investigated here. As one can see, the overall behavior is that
the difference in the final stateDSf has a somewhat linear
behavior of the influenceI of the vertexv being removed.
The plot of TRSC does not follow the straight line approxi-
mation for larger values ofI, which might indicate that the
measure of influence used here is not perfectly suited for the
applied dynamics.

Since the networks have a fixed structure, the values for
the difference in the final statesDSf for the different influ-
encesI do not all follow the approximated straight line as
can be observed, but the calculated error for the individual
values ofDSf are, nevertheless, small. Since the dynamics
incorporates a majority rule, the effect of a vertex removal
decays with the distance from the removed vertex and there-
fore only a fraction of the downstream vertices get a different
state after the removal. How large the fraction is depends
therefore on the structure of the network and the typical dis-
tance to the downstream vertices from the removed one.

Figure 6 shows the fraction of all vertices with distanced
from the removed vertex which have a different final state
DSf,d compared with the final state before the removal. Ex-
cept from the exponential decay, one can also observe that
the longest directed path is only of four steps in TREC and of
six in TRSC. As a comparison, the diameter in TREC is 13
and in TRSC 14. Since the fraction of vertices with a differ-
ent state drops exponentially with distance, a refinement of
the measure of influence used here would be the measure of
proximity prestige(see Ref.[22]), which is a vertex’s number
of downstream vertices normalized with their average dis-
tance to the vertex.

NNCE is applied to a similar dynamics as the transcrip-
tional regulation networks, with the only difference that there
are no negative regulations which overrule the positive ones.
The neurons are thus treated asMcCullough-Pittsneurons
[25,26] with binary stateson/off, and with equal and positive
synaptic coupling strength(excitatory) and with a threshold
of ni /0.5, whereni are the number of inputs. All neurons are
considered to be excitatory, that is, in a stateoff when the
input is below the threshold andon if the input is above the
threshold. The update of the state of each neuron is therefore
simply a majority rule, that is, the stateSi of a neuronvi is
on/off if the majority of the states of the incoming signals are
on/off. If there is no majority, that is, the number ofon inputs
are equal to the number ofoff inputs, the state of the neuron
is defined to beon. Since the influence of the neurons in the
network is concentrated to a value aroundI =0.94 a linear
dependence of the difference in the stateDSf to the influence
I is thus not achievable. However, we can still get informa-
tion of the effect of a vertex removal just by looking at the
average difference in the final state from the deletion of a
neuron. As before, the results are averaged by a number of
different initial configurations and different vertex removals.

The results of the simulations done for NNCE are sum-
marized in Table I. As one can see, the change in the state of
the system is very small even if the influence of the removed
vertex is large. The fact that the network is very dense and
that the dynamics follow a majority rule implies that the
change in the state of the system from the deletion of an
individual neuron is small. The change in the state from the
removal of a single neuron is simply averaged out in most
cases, but there are of course changes in the state of some
neurons located nearby the removed neuron. A further study
would be to see how the state of the system responds when
deleting a neighborhood of neurons to resemble a more real-
istic physical damage. One of the conclusions one can make
is that even if the influence of most vertices is large, the
dynamics put on the network results in a situation where the
network is not very affected by a random removal of a single
neuron. Figure 7 shows the decay of the fraction of changed
states with the distance, and like the transcriptional regula-
tion networks the decay fits well to an exponential decay.

V. SUMMARY

The two directed types of networks analyzed here are
shown to have a different structure in various measures

FIG. 5. (Color online) The difference of the final stateDSf ver-
sus vertex removal of a vertex with influenceI. The lines are
straight line approximations to guide the eye and the plotted data
are binned. The errors are smaller than the symbol sizes.

FIG. 6. (Color online) The fraction of vertices with a different
stateDSf,d plotted against distance of the removed vertex. The data
are fitted to exponential functions. The errors are smaller than the
symbol sizes.
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which incorporates the direction of the edges. The neural
network ofC. eleganceconsists of mostly vertices with both
incoming and outgoing arcs, interneurons, possibly due to
the fact that it is an information network in which informa-
tion is processed and spread between different parts of the
network. There is also a fraction of vertices with only out-
going arcs, sensory neurons, that feed the network with ex-
ternal information. Finally, there is a small fraction of verti-
ces with only incoming arcs, motor neurons, responsible for
igniting chemical reactions like contraction of muscles.

We find that the protein regulation networks ofE. coli and
S. cerevisaeboth show a small fraction of proteins with both
incoming and outgoing arcs, and the dominating part of the
network consists of proteins that only have incoming arcs,
which we term laborers in the analogy of a human laborer
which only has a small influence in the system he or she
works in. The laborers are possibly used as building blocks
or as components in different biochemical processes. There
are also proteins that have a large number of outgoing arcs
and thus globally control the production of many proteins,
where most of them are laborers.

The influence of the vertices, defined for a vertex as the
fraction of vertices in the network situated downstream of

the vertex, are limited for most vertices in the transcriptional
regulation networks. The neural network is showing a sub-
stantial part of the network to influence almost all vertices in
the network. We simulate the biological processes on the
networks and we investigate relationship of the influence of a
removed vertex with the change in the state of the biological
system. In the protein regulation networks the effect of a
random removal are limited in most cases due to the fact that
the influence of most proteins are restricted to a small num-
ber of proteins. However, the removal of a protein of great
influence changes the state of the system more since the
change in the state is shown to increase, with some excep-
tions, linearly with the influence. In the case of the neural
network where the influence of most vertices are fairly large,
the great number of arcs suppresses the effect of the removal
of an individual neuron since the state of each neuron obeys
a majority rule of the states of the incoming signals. Since
the changes in the states of the vertices due to a vertex re-
moval is shown to decay exponentially with the distance
from the removed vertex, a proper refinement of the measure
of influence could be to include the typical distance to the
downstream vertices in the measure of influence, just like the
measure ofproximity prestige. A remark with the previous
observations in mind would therefore be that the influence or
prestige in a network(directed or not) probably to a large
extent depends on the dynamics applied to the network, and
therefore every investigation of prestige or influence should
be in conjunction with the dynamics applied to the network.
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FIG. 7. (Color online) The fraction of vertices with a different
stateDSf,d plotted against distance of the removed vertex. The data
are fitted to an exponential function.
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